Monday, 5 May 2014

Artificial intelligence

Artificial intelligence (AI) is the human-like intelligence exhibited by machines or software. The AI field is interdisciplinary, in which a number of sciences and professions converge, including computer science,psychologylinguisticsphilosophy and neuroscience, as well as other specialized fields such as artificial psychology. Major AI researchers and textbooks define the field as "the study and design of intelligent agents", where an intelligent agent is a system that perceives its environment and takes actions that maximize its chances of success. John McCarthy, who coined the term in 1955, defines it as "the science and engineering of making intelligent machines".


AI research is highly technical and specialised, and is deeply divided into subfields that often fail to communicate with each other. Some of the division is due to social and cultural factors: subfields have grown up around particular institutions and the work of individual researchers. AI research is also divided by several technical issues. Some subfields focus on the solution of specific problems. Others focus on one of several possible approaches or on the use of a particular tool or towards the accomplishment of particular applications.
The central problems (or goals) of AI research include reasoningknowledge, planning, learningnatural language processing (communication), perception and the ability to move and manipulate objects. General intelligence (or "strong AI") is still among the field's long term goals. Currently popular approaches include statistical methodscomputational intelligence and traditional symbolic AI. There are a large number of tools used in AI, including versions of search and mathematical optimizationlogicmethods based on probability and economics, and many others.
The field was founded on the claim that a central property of humans, intelligence—the sapience of Homo sapiens—"can be so precisely described that a machine can be made to simulate it." This raises philosophical issues about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence, issues which have been addressed by mythfiction and philosophy since antiquity.Artificial intelligence has been the subject of tremendous optimism but has also suffered stunning setbacks. Today it has become an essential part of the technology industry, providing the heavy lifting for many of the most challenging problems in computer science.

Goals

The general problem of simulating (or creating) intelligence has been broken down into a number of specific sub-problems. These consist of particular traits or capabilities that researchers would like an intelligent system to display. The traits described below have received the most attention.

Deduction, reasoning, problem solving

Early AI researchers developed algorithms that imitated the step-by-step reasoning that humans use when they solve puzzles or make logical deductions. By the late 1980s and 1990s, AI research had also developed highly successful methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.
For difficult problems, most of these algorithms can require enormous computational resources – most experience a "combinatorial explosion": the amount of memory or computer time required becomes astronomical when the problem goes beyond a certain size. The search for more efficient problem-solving algorithms is a high priority for AI research.
Human beings solve most of their problems using fast, intuitive judgements rather than the conscious, step-by-step deduction that early AI research was able to model. AI has made some progress at imitating this kind of "sub-symbolic" problem solving: embodied agent approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net research attempts to simulate the structures inside the brain that give rise to this skill; statistical approaches to AI mimic the probabilistic nature of the human ability to guess.

Knowledge representation

Knowledge representation and knowledge engineering are central to AI research. Many of the problems machines are expected to solve will require extensive knowledge about the world. Among the things that AI needs to represent are: objects, properties, categories and relations between objects; situations, events, states and time; causes and effects; knowledge about knowledge (what we know about what other people know); and many other, less well researched domains. A representation of "what exists" is an ontology: the set of objects, relations, concepts and so on that the machine knows about. The most general are called upper ontologies, which attempt to provide a foundation for all other knowledge.
Among the most difficult problems in knowledge representation are:
The breadth of commonsense knowledge
The number of atomic facts that the average person knows is astronomical. Research projects that attempt to build a complete knowledge base of commonsense knowledge (e.g., Cyc) require enormous amounts of laborious ontological engineering — they must be built, by hand, one complicated concept at a time. A major goal is to have the computer understand enough concepts to be able to learn by reading from sources like the internet, and thus be able to add to its own ontology.
The subsymbolic form of some commonsense knowledge
Much of what people know is not represented as "facts" or "statements" that they could express verbally. For example, a chess master will avoid a particular chess position because it "feels too exposed" or an art critic can take one look at a statue and instantly realize that it is a fake. These are intuitions or tendencies that are represented in the brain non-consciously and sub-symbolically.Knowledge like this informs, supports and provides a context for symbolic, conscious knowledge. As with the related problem of sub-symbolic reasoning, it is hoped that situated AIcomputational intelligence, or statistical AI will provide ways to represent this kind of knowledge.

Planning[edit]


Intelligent agents must be able to set goals and achieve them. They need a way to visualize the future (they must have a representation of the state of the world and be able to make predictions about how their actions will change it) and be able to make choices that maximize the utility (or "value") of the available choices.
In classical planning problems, the agent can assume that it is the only thing acting on the world and it can be certain what the consequences of its actions may be. However, if the agent is not the only actor, it must periodically ascertain whether the world matches its predictions and it must change its plan as this becomes necessary, requiring the agent to reason under uncertainty.
Multi-agent planning uses the cooperation and competition of many agents to achieve a given goal. Emergent behavior such as this is used by evolutionary algorithms and swarm intelligence.

Learning


Machine learning is the study of computer algorithms that improve automatically through experience and has been central to AI research since the field's inception.
Unsupervised learning is the ability to find patterns in a stream of input. Supervised learning includes both classification and numerical regression. Classification is used to determine what category something belongs in, after seeing a number of examples of things from several categories. Regression is the attempt to produce a function that describes the relationship between inputs and outputs and predicts how the outputs should change as the inputs change. In reinforcement learning the agent is rewarded for good responses and punished for bad ones. These can be analyzed in terms o decision theory, using concepts like utility. The mathematical analysis of machine learning algorithms and their performance is a branch of theoretical computer science known as computational learning theory.
Within developmental robotics, developmental learning approaches were elaborated for lifelong cumulative acquisition of repertoires of novel skills by a robot, through autonomous self-exploration and social interaction with human teachers, and using guidance mechanisms such as active learning, maturation, motor synergies, and imitation.

Natural language processing (communication)

Natural language processing gives machines the ability to read and understand the languages that humans speak. A sufficiently powerful natural language processing system would enable natural language user interfaces and the acquisition of knowledge directly from human-written sources, such as newswire texts. Some straightforward applications of natural language processing include information retrieval (or text mining) and machine translation.
A common method of processing and extracting meaning from natural language is through semantic indexing. Increases in processing speeds and the drop in the cost of data storage makes indexing large volumes of abstractions of the users input much more efficient.

Perception


Machine perception is the ability to use input from sensors (such as cameras, microphones, tactile sensors, sonar and others more exotic) to deduce aspects of the world.Computer vision is the ability to analyze visual input. A few selected subproblems are speech recognitionfacial recognition and object recognition.

Motion and manipulation

The field of robotics is closely related to AI. Intelligence is required for robots to be able to handle such tasks as object manipulation and navigation, with sub-problems of localization (knowing where you are, or finding out where other things are), mapping (learning what is around you, building a map of the environment), and motion planning (figuring out how to get there) or path planning (going from one point in space to another point, which may involve compliant motion - where the robot moves while maintaining physical contact with an object).

Long-term goals

Among the long-term goals in the research pertaining to artificial intelligence are: (1) Social intelligence, (2) Creativity, and (3) General intelligence.

Social intelligence

Affective computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects. It is an interdisciplinary field spanning computer sciencespsychology, and cognitive science. While the origins of the field may be traced as far back as to early philosophical inquiries into emotion, the more modern branch of computer science originated with Rosalind Picard's 1995 paper on affective computing. A motivation for the research is the ability to simulate empathy. The machine should interpret the emotional state of humans and adapt its behaviour to them, giving an appropriate response for those emotions.
Emotion and social skills play two roles for an intelligent agent. First, it must be able to predict the actions of others, by understanding their motives and emotional states. (This involves elements of game theorydecision theory, as well as the ability to model human emotions and the perceptual skills to detect emotions.) Also, in an effort to facilitate human-computer interaction, an intelligent machine might want to be able to display emotions—even if it does not actually experience them itself—in order to appear sensitive to the emotional dynamics of human interaction.

No comments:

Post a Comment